28 research outputs found

    Matrix-equation-based strategies for convection-diffusion equations

    Full text link
    We are interested in the numerical solution of nonsymmetric linear systems arising from the discretization of convection-diffusion partial differential equations with separable coefficients and dominant convection. Preconditioners based on the matrix equation formulation of the problem are proposed, which naturally approximate the original discretized problem. For certain types of convection coefficients, we show that the explicit solution of the matrix equation can effectively replace the linear system solution. Numerical experiments with data stemming from two and three dimensional problems are reported, illustrating the potential of the proposed methodology

    Numerical methods for large-scale Lyapunov equations with symmetric banded data

    Full text link
    The numerical solution of large-scale Lyapunov matrix equations with symmetric banded data has so far received little attention in the rich literature on Lyapunov equations. We aim to contribute to this open problem by introducing two efficient solution methods, which respectively address the cases of well conditioned and ill conditioned coefficient matrices. The proposed approaches conveniently exploit the possibly hidden structure of the solution matrix so as to deliver memory and computation saving approximate solutions. Numerical experiments are reported to illustrate the potential of the described methods

    Solving rank structured Sylvester and Lyapunov equations

    Full text link
    We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off-diagonal blocks. This comprises problems with banded data, recently studied by Haber and Verhaegen in "Sparse solution of the Lyapunov equation for large-scale interconnected systems", Automatica, 2016, and by Palitta and Simoncini in "Numerical methods for large-scale Lyapunov equations with symmetric banded data", SISC, 2018, which often arise in the discretization of elliptic PDEs. We show that, under suitable assumptions, the quasiseparable structure is guaranteed to be numerically present in the solution, and explicit novel estimates of the numerical rank of the off-diagonal blocks are provided. Efficient solution schemes that rely on the technology of hierarchical matrices are described, and several numerical experiments confirm the applicability and efficiency of the approaches. We develop a MATLAB toolbox that allows easy replication of the experiments and a ready-to-use interface for the solvers. The performances of the different approaches are compared, and we show that the new methods described are efficient on several classes of relevant problems

    A new ParaDiag time-parallel time integration method

    Full text link
    Time-parallel time integration has received a lot of attention in the high performance computing community over the past two decades. Indeed, it has been shown that parallel-in-time techniques have the potential to remedy one of the main computational drawbacks of parallel-in-space solvers. In particular, it is well-known that for large-scale evolution problems space parallelization saturates long before all processing cores are effectively used on today's large scale parallel computers. Among the many approaches for time-parallel time integration, ParaDiag schemes have proved themselves to be a very effective approach. In this framework, the time stepping matrix or an approximation thereof is diagonalized by Fourier techniques, so that computations taking place at different time steps can be indeed carried out in parallel. We propose here a new ParaDiag algorithm combining the Sherman-Morrison-Woodbury formula and Krylov techniques. A panel of diverse numerical examples illustrates the potential of our new solver. In particular, we show that it performs very well compared to different ParaDiag algorithms recently proposed in the literature

    Optimality properties of Galerkin and Petrov-Galerkin methods for linear matrix equations

    Get PDF
    Galerkin and Petrov-Galerkin methods are some of the most successful solution procedures in numerical analysis. Their popularity is mainly due to the optimality properties of their approximate solution. We show that these features carry over to the (Petrov-)Galerkin methods applied for the solution of linear matrix equations. Some novel considerations about the use of Galerkin and Petrov-Galerkin schemes in the numerical treatment of general linear matrix equations are expounded and the use of constrained minimization techniques in the Petrov-Galerkin framework is proposed

    Numerical solution of large-scale linear matrix equations

    Get PDF
    We are interested in the numerical solution of large-scale linear matrix equations. In particular, due to their occurrence in many applications, we study the so-called Sylvester and Lyapunov equations. A characteristic aspect of the large-scale setting is that although data are sparse, the solution is in general dense so that storing it may be unfeasible. Therefore, it is necessary that the solution allows for a memory-saving approximation that can be cheaply stored. An extensive literature treats the case of the aforementioned equations with low-rank right-hand side. This assumption, together with certain hypotheses on the spectral distribution of the matrix coefficients, is a sufficient condition for proving a fast decay in the singular values of the solution. This decay motivates the search for a low-rank approximation so that only low-rank matrices are actually computed and stored remarkably reducing the storage demand. This is the task of the so-called low-rank methods and a large amount of work in this direction has been carried out in the last years. Projection methods have been shown to be among the most effective low-rank methods and in the first part of this thesis we propose some computational enhanchements of the classical algorithms. The case of equations with not necessarily low rank right-hand side has not been deeply analyzed so far and efficient methods are still lacking in the literature. In this thesis we aim to significantly contribute to this open problem by introducing solution methods for this kind of equations. In particular, we address the case when the coefficient matrices and the right-hand side are banded and we further generalize this structure considering quasiseparable data. In the last part of the thesis we study large-scale generalized Sylvester equations and, under some assumptions on the coefficient matrices, novel approximation spaces for their solution by projection are proposed
    corecore